La biodiversitĂ© peut s'Ă©tudier Ă trois niveaux d'Ă©chelle diffĂ©rents au niveau des Ă©cosystĂšmes, au niveau des espĂšces et au niveau des individus d'une mĂȘme espĂšce. Comment Ă©volue la biodiversitĂ© au cours du temps ?I. Une Ă©volution de la biodiversitĂ© observable aux courtes Ă©chelles du tempsAu niveau gĂ©nĂ©tique l'Ă©volution de la rĂ©sistance aux insecticides chez le moustiqueâą L'Ă©tude de la diversitĂ© gĂ©nĂ©tique au sein d'une espĂšce montre que cette diversitĂ© Ă©volue sur de courtes Ă©chelles de temps. Par exemple, l'Ă©tude de la population ensemble d'individus d'une mĂȘme espĂšce vivant en un lieu donnĂ© Ă un moment donnĂ© des moustiques Culex pipiens de la rĂ©gion de Montpellier met en Ă©vidence une Ă©volution de cette population sur quelques annĂ©es.âą Avant 1968, la trĂšs grande majoritĂ© de la population de moustiques vivant dans la rĂ©gion de Montpellier Ă©tait sensible aux insecticides substances tuant les insectes tandis qu'une faible proportion y Ă©tait rĂ©sistante. AprĂšs l'utilisation continue d'insecticides Ă partir de 1968 jusqu'en 2002, une forte augmentation de la proportion de moustiques rĂ©sistants aux insecticides employĂ©s est observĂ©e. Les Ă©tudes rĂ©alisĂ©es ont mis en Ă©vidence que les insecticides ont Ă©liminĂ© les moustiques qui y Ă©taient sensibles, mais les moustiques rĂ©sistants ont survĂ©cu Ă l'exposition aux insecticides. Or cette rĂ©sistance aux insecticides chez ces moustiques est d'origine gĂ©nĂ©tique. La rĂ©sistance aux insecticides est un caractĂšre avantageux pour les moustiques lorsque ces insecticides sont utilisĂ©s, d'oĂč l'augmentation de la frĂ©quence de cette rĂ©sistance dans cette population au cours du temps. Ainsi, l'Ă©volution de cette population de moustiques de la rĂ©gion de Montpellier s'est effectuĂ©e sur un court intervalle de temps, en quelques exemple d'Ă©volution gĂ©nĂ©tique sur une courte Ă©chelle de temps l'Ă©volution de la rĂ©sistance aux insecticides chez le moustiqueAu niveau spĂ©cifique la spĂ©ciation de pinsons des GalĂĄpagosâą Sur l'Ăźle DaphnĂ© Major de l'archipel des GalĂĄpagos, situĂ©e dans l'ocĂ©an Pacifique, des chercheurs ont Ă©tudiĂ© diffĂ©rentes espĂšces de pinsons. En 1981, un pinson mĂąle d'une espĂšce inexistante sur l'Ăźle est arrivĂ© sur l'Ăźle DaphnĂ© Major, en provenance d'une autre Ăźle des GalĂĄpagos situĂ©e Ă une centaine de kilomĂštres. Sur l'Ăźle DaphnĂ© Major, cet individu mĂąle, de l'espĂšce gĂ©ophile Ă bec conique, s'est accouplĂ© avec des femelles d'une autre espĂšce, appelĂ©e gĂ©ophile Ă bec moyen » et dĂ©jĂ prĂ©sente sur l'Ăźle. Des pinsons hybrides sont nĂ©s de cet accouplement. Ces hybrides se sont rĂ©vĂ©lĂ©s fertiles et se sont reproduits uniquement entre eux, formant une nouvelle espĂšce, baptisĂ©e Big bird ». La formation d'une nouvelle espĂšce, appelĂ©e spĂ©ciation, de pinsons sur cette Ăźle des GalĂĄpagos s'est donc faite en 3 gĂ©nĂ©rations, c'est-Ă -dire en un temps court. Ainsi, l'Ă©volution de la biodiversitĂ© observĂ©e Ă l'Ă©chelle des espĂšces peut s'effectuer sur de courtes Ă©chelles de temps et peut ĂȘtre observĂ©e actuellement et Ă l'Ă©chelle de temps d'une vie exemple d'Ă©volution spĂ©cifique sur une courte Ă©chelle de temps la spĂ©ciation de pinsons des GalĂĄpagosII. Une Ă©volution de la biodiversitĂ© observable Ă de plus longues Ă©chelles de tempsâą La Terre s'est formĂ©e il y a 4,55 milliards d'annĂ©es et l'apparition de la vie sur Terre est datĂ©e d'au moins â 3,5 milliards d'annĂ©es. L'Ă©tude de la biodiversitĂ© passĂ©e s'appuie sur l'analyse des fossiles restes ou traces d'ĂȘtres vivants conservĂ©s dans une roche. Ainsi, les Ă©tudes des fossiles montrent que depuis que la vie existe sur Terre, la biodiversitĂ© a Ă©voluĂ© Ă l'Ă©chelle des temps gĂ©ologiques. De grands groupes d'ĂȘtres vivants sont apparus, ont Ă©voluĂ© et certains d'entre eux ont disparu alors que d'autres groupes d'ĂȘtres vivants ont Ă©mergĂ©. On estime qu'en plus de 3,5 milliards d'annĂ©es d'Ă©volution, environ 99 % des espĂšces totales ayant vĂ©cu ou vivant sur Terre ont disparu, c'est-Ă -dire que les espĂšces actuelles ne reprĂ©sentent qu'une infime partie du total des espĂšces ayant existĂ© depuis les dĂ©buts de la vie sur Terre. Ainsi, l'Ă©tat actuel de la biodiversitĂ© correspond Ă une Ă©tape de l'histoire du vivant, c'est-Ă -dire Ă une Ă©tape de l' Les crises biologiques des phĂ©nomĂšnes de grande ampleur, exceptionnels et alĂ©atoiresâą Les Ă©tudes des fossiles ont mis en Ă©vidence que 5 grandes crises biologiques ont affectĂ© la vie depuis son apparition sur Terre. Une crise biologique est une pĂ©riode de l'histoire de la Terre marquĂ©e par la disparition plus ou moins brutale de groupes entiers d'organismes. Elle se caractĂ©rise par l'extinction de nombreuses espĂšces. Ces extinctions massives sont suivies de phĂ©nomĂšnes de diversification, c'est-Ă -dire d'apparition de nouvelles espĂšces, qui occupent les milieux libĂ©rĂ©s par les espĂšces disparues lors de la exemple de crise biologique la crise CrĂ©tacĂ©eâPalĂ©ocĂšne, datĂ©e de â 65 millions d'annĂ©esâą La derniĂšre crise biologique est celle datĂ©e de â 65 Ma, qui marque la limite entre le CrĂ©tacĂ© derniĂšre pĂ©riode gĂ©ologique de l'Ăšre secondaire et le PalĂ©ocĂšne premiĂšre pĂ©riode gĂ©ologique de l'Ăšre tertiaire. Au cours de cette crise biologique, des groupes entiers d'espĂšces disparaissent en domaine continental, les Archosaures vertĂ©brĂ©s regroupant les crocodiliens, les oiseaux et les dinosaures, Ă l'exception des oiseaux et en milieu ocĂ©anique, les ammonites mollusques cĂ©phalopodes ainsi que certains des foraminifĂšres animaux unicellulaires. La crise CrĂ©tacĂ©âPalĂ©ocĂšne est une crise brutale, massive et sĂ©lective. Les mammifĂšres et les oiseaux survivent et connaissent une forte diversification aprĂšs la crise. Les origines probables de la crise CrĂ©tacĂ©âPalĂ©ocĂšne sont d'une part, la chute d'une mĂ©tĂ©orite d'environ 10 km de diamĂštre Ă proximitĂ© du Mexique et d'autre part, un fort Ă©pisode volcanique, dont les traces sont retrouvĂ©es au niveau des trapps du Deccan, formĂ©s d'empilements de gigantesques coulĂ©es de basalte en Inde. Ainsi, la biodiversitĂ© s'est modifiĂ©e au cours des temps gĂ©ologiques sous l'effet de nombreux facteurs d'origine terrestre ou extraterrestre chute de mĂ©tĂ©orites par exemple, lors de diffĂ©rentes crises de grande ampleur, exceptionnelles et liĂ©es au exemple de crise biologique la crise CrĂ©tacĂ©eâPalĂ©ocĂšne, datĂ©e de â 65 millions d'annĂ©esActuellement une 6e crise biologique, consĂ©quence des activitĂ©s humainesâą Aujourd'hui, environ 2 millions d'espĂšces ont Ă©tĂ© dĂ©crites et le nombre total d'espĂšces existant sur Terre est estimĂ© Ă 8,7 millions d'espĂšces. Il reste donc de nombreuses espĂšces Ă dĂ©couvrir. Mais actuellement, de nombreux scientifiques considĂšrent que la Terre est en train de connaĂźtre une 6e crise biologique. Les Ă©tudes de l'Ă©volution de la biodiversitĂ© montrent que 2 espĂšces de vertĂ©brĂ©s ont disparu chaque annĂ©e depuis un siĂšcle en moyenne. Environ 41 % des amphibiens et plus d'un quart des mammifĂšres sont menacĂ©s d'extinction. PrĂšs de la moitiĂ© des rĂ©cifs coralliens a disparu ces 30 derniĂšres annĂ©es. Au sein des espĂšces, un appauvrissement du nombre de populations est observĂ© les populations de plus de 3 000 espĂšces de poissons, oiseaux, mammifĂšres, amphibiens et reptiles ont diminuĂ© de 60 % en seulement quarante ans depuis 1970. En effet, l'homme, apparu rĂ©cemment dans l'Ă©volution, peuple l'ensemble des continents et a dĂ©veloppĂ© des activitĂ©s nombreuses et variĂ©es ayant des consĂ©quences directes et indirectes sur la biodiversitĂ© disparition des habitats de nombreuses espĂšces, utilisation de produits chimiques toxiques pour certaines espĂšces, fragilisation des Ă©cosystĂšmes, rĂ©chauffement planĂ©taire liĂ© Ă l'augmentation de l'effet de serre due aux activitĂ©s humainesâŠ. Les disparitions actuelles d'espĂšces correspondent Ă une extinction massive qui s'effectue Ă grande vitesse. Cette 6e crise biologique illustre les interactions entre les espĂšces, plus prĂ©cisĂ©ment entre l'Homme et les autres espĂšces, qui orientent actuellement l'Ă©volution de la biodiversitĂ© de maniĂšre prĂ©occupante pour l'ensemble de la biosphĂšre, y compris l'espĂšce n°1Exercice n°2Exercice n°3
lesvilles au moyen age 5Úme évaluation. Menu. Menu. jean reno décédé; cpi inspecteur du travail; formation marketing digital à distance pÎle emploi. but de la politique; salaire
1. La mesure de la biodiversiteÌ BiodiversiteÌ speÌcifique et abondance â De nombreuses espeÌces sont preÌsentes sur le globe, mais seul un faible pourcentage est connu graÌce aÌ diffeÌrentes meÌthodes dâeÌchantillonnage. â La biodiversiteÌ speÌcifique correspond au nombre dâespeÌces vivant dans un milieu. Mais la biodiversiteÌ nâest pas quâune collection dâespeÌces, elle est aussi geÌneÌtique et eÌcosysteÌmique. â La meÌthode de capture-marquage-recapture CMR est lâune des techniques dâeÌchantillonnage permettant dâestimer lâabondance dâune population. Proportion dâun caracteÌre â AÌ partir dâun eÌchantillon, on peut estimer la proportion dâindividus au sein dâune population portant un caracteÌre pheÌnotypique donneÌ, avec une certaine incertitude. Cette dernieÌre est preÌciseÌe par un intervalle de confiance. Pour un niveau de confiance donneÌ, plus la taille de lâeÌchantillon est grande, plus lâestimation est preÌcise. 2. LâeÌvolution geÌneÌtique des populations â Le modeÌle de Hardy-Weinberg preÌdit que, sous certaines conditions taille infinie de la population, absence de migration, de mutation et de seÌlection, panmixie, la structure geÌnotypique dâune population de grand effectif est stable. Pour un geÌne aÌ deux alleÌles et , les freÌquences et restent constantes au cours des geÌneÌrations. La distribution geÌnotypique de la population est ainsi stable , , . Cette stabiliteÌ est appeleÌe eÌquilibre de Hardy-Weinberg. â Un eÌcart aÌ lâeÌquilibre de Hardy-Weinberg sâexplique par les effets des forces eÌvolutives mutation, seÌlection naturelle, deÌrive geÌneÌtique, migration, etc. et se manifeste par une variation des freÌquences alleÌliques et geÌnotypiques au fil des geÌneÌrations. 3. Lâimpact des activiteÌs humaines sur la biodiversiteÌ â Certaines activiteÌs humaines ont des conseÌquences neÌfastes sur la biodiversiteÌ pollution, changement climatique, surexploitation, etc. et peuvent ainsi conduire aÌ lâextinction dâespeÌces. â Les actions humaines peuvent fragmenter un eÌcosysteÌme et donc les populations qui sây trouvent en plusieurs eÌchantillons de plus faible effectif. Ce pheÌnomeÌne peut provoquer une deÌrive geÌneÌtique, qui aÌ son tour diminue la diversiteÌ geÌneÌtique des populations et les rend plus vulneÌrables. â Les donneÌes recueillies par les scientifiques sur les eÌcosysteÌmes permettent de mieux les geÌrer et donc dây preÌserver la biodiversiteÌ.La date de publication est mentionnĂ©e (et rĂ©cente) âą Les sources de lâarticle sont citĂ©es (en bas de page) CHAPITRE 4 â LA BIODIVERSITĂ CHANGE AU COURS DU TEMPS LecorrigĂ©. Imprimer. La biodiversitĂ© Ă©volue au cours du temps. Quels sont les mĂ©canismes expliquant l'Ă©volution de la biodiversitĂ© au cours du temps ? L'Ă©volution de la biodiversitĂ©